Implementing the Open Water Information Architecture (OWIA)

Theme I: Bridging-The-Gap Between Research and Operations

Topic A: Water Balance Automation

John Helly

La Jolla, California

September 23, 2017

SAN DIEGO SUPERCOMPUTER CENTER

A National Laboratory for Computational Science and Engineering at the University of California, San Diego

- 1 What Are We Doing?
- 2 How Are We Doing IT?

OWIA Concept of Operations

OWIA-Node Functional Components

Integrated Schedule

Implementing the OWIA

Theme I Topic A: Water Balance Automation (Use Case)

3 Results

Tables (Programmable)

Application Example: WaDE Interoperability with Traceability

& Reproducibility

Figures (Programmable)

1 What Are We Doing?

2 How Are We Doing IT?

OWIA Concept of Operations OWIA-Node Functional Components Integrated Schedule Implementing the OWIA

Theme I Topic A: Water Balance Automation (Use Case)

3 Results

Tables (Programmable)

Application Example: WaDE Interoperability with Traceability & Reproducibility
Figures (Programmable)

What Are We Doing?

Building a decision-support system to improve water resource management and advance hydrologic research

- Mobilizing the best data in an on-going way
- Ensuring that it is open and sustainable
- Providing for technology transfer from research to operations
- Controlling development and operational risk (cost, schedule, technical)

1 What Are We Doing?

2 How Are We Doing IT?
OWIA Concept of Operations

OWIA-Node Functional Components

Integrated Schedule

Implementing the OWIA

Theme I Topic A: Water Balance Automation (Use Case)

3 Results

Tables (Programmable)

Application Example: WaDE Interoperability with Traceability & Reproducibility

Figures (Programmable)

OWIA Concept of Operations

OWIA-Node Functional Components

OWIA Integrated Schedule WaDE, CCST, AB1755, OWIA

Implementing the OWIA

Implementing the Open Water Information Architecture Proposal to NSF

September 16, 2017

Contents

1	Miss	Mission Statement							
	1.1	Intelle	ctual Merit	1					
	1.2	Broade	er Impacts						
2	Tech	nical D	escription						
	2.1	Bridgi	ng the Gap Between Operations and Research						
		2.1.1	Water Balance Reporting Automation	4					
		2.1.2	Estimability of Evapotranspiration and Precipitation Using Current Data Sources and Characterization of Data Gaps						
		2.1.3	Correspondence of Spatial Delineations at Watershed-scales (DAUs, HUCs, and GSAs).						
		2.1.4	Decision-support for Water Curtailments						
	2.2 Integration of Modeling and Observing Systems Into Water Resource Management Ac								
		Regional Scales							
		2.2.1	Integration of Atmospheric River Forecasts and Advances in Reservoir Operations						
			Into Seasonal and Annual Forecasts of Water Supply						
		2.2.2	Hydromet Network Data Exploitation	1					
3	Proj	ect Ma	nagement	1					
	3.1	Project	Deliverables	1					

Water Balance Automation Methodology

Quality Control Procedure (Protocol)

Conceptual Model

Water Balance Automation Quality Control (Version 1.0)

- Transformation: From spreadsheets to interoperable (*.csv) form (Level 0 to Level 1), separate Use and Supply, apply verification (Verification-000?)
- Standardization: applying controlled vocabulary to assure proper aggregation and tabulation; add georeferencing
- Verification Procedure (or Protocol):
 - Verify Level 1 to Level 0: Checking for completeness, consistency, traceability within hydrologic region, separating Use and Supply and assigning positive values to Supply and negative values to Use.
 - 2. Verify Level 2 Integration: Concatenate Level 1 files across hydrologic regions
 - Verification-100: Checking for completeness, consistency, traceablility within hydrologic regions
 - Verification-200: Checking for completeness, consistency, traceability across hydrologic regions with tabulation at different spatial scales (i.e., DAU, Planning Area, Hydrologic Region, State)
 - 5. Verification-300: Re-factoring to Category B values (Environmental, Supply, Use) and verify State totals
- Validation: under development

1 What Are We Doing?

2 How Are We Doing IT?

OWIA Concept of Operations

OWIA-Node Functional Components

Integrated Schedule

Implementing the OWIA

Theme I Topic A: Water Balance Automation (Use Case)

3 Results

Tables (Programmable)

Application Example: WaDE Interoperability with Traceability

& Reproducibility

Figures (Programmable)

WY2010 Water Use State-level Summary

	CategoryB			
	Environmental	Supply	Use	
	KAcreFt	KAcreFt	KAcreFt	
CategoryA	sum	sum	sum	
Agriculture	0	32268	-32448	
InstreamFlowRequirements	6755	0	0	
ManagedWetlands	0	1465	-1473	
RequiredDeltaOutflow	5323	0	0	
Urban	0	8643	-8413	
WildScenicRiver	25061	0	0	
All	37140	42376	-42335	

WY2010 Water Use Hydrologic Region Summary

a Exchange Net	work (Draft)	CA Department of Wa				
		Environmental KAcreft	CategoryB Supply KAcrel't	Use KAcreFt	All KAcreFt	
HRNAME	Category A	SED	sum	SUD	sum	
Central Court	Agriculture InstrumFlowRequirements	0.0 25.3	824.1 0.0	- 836.9	-1.280e + 2.530e +	
	Managed Wednesds	0.0	0.0	-0.4	0.000e +	
	RequiredDeltaOuthow	0.0	0.4	0.0	0.000e +	
	Urban	0.0	208.6	- 256.6	1.195e +	
	WildScenicRiver	123.7	0.0	- 2000	1.207e +	
Colorado River	Agriculture	0.0	3499.2	- 3480.9	1.830c +	
	InstrumFlowRequirements	0.0	0.0	0.0	0.000e +	
	ManagedWedands	0.0	30.3	- 30.3	0.000e+	
	RequiredDeltsOutlow	0.0	0.0	0.0	0.000a +	
	Urban	0.0	605.6	-623.9	-1.830e +	
	WildScenicRiver	0.0	0.0	0.0	0.000e+	
North Coast	Agriculture	0.0	807.2	- 820.0	-1.280e +	
	InstreamFlowRequirements	1800.6	0.0	0.0	1.801e+	
	ManagedWedands	0.0	217.1	- 224.8	-7.700e +	
	RequiredDeltaOutflow Urban	0.0	179.4	0.0 - 158.9	0.000e + 2.050e +	
	WildScenicRiver	17274.1	0.0	- 105.9	1.727e +	
North Laborato	Agriculture	0.0	520.9	- 523.5	-2.600e +	
Acces Constitution	InstrumFlowRequirements	67.1	0.0	- 0200	6.710c +	
	Managed Wednesds	0.0	26.9	- 26.9	-1.943e -	
	RequiredDeltaOutRow	0.0	0.0	0.0	0.000e+	
	Urban	0.0	46.8	- 44.2	2.600c+	
	WildScenicRiver	287.3	0.0	0.0	2.873c +	
Secremento River	Agriculture	0.0	7902.4	-7910.3	-7.900e +	
	InstreamFlow Requirements	4117.0	0.0	0.0	4.117e+	
	ManagedWedands	0.0	581.8	- 578.8	3.000e +	
	RequiredDeltaOutRow	5323.4	0.0	0.0	5.323e +	
	Urban	0.0	1013.3	-1008.2	5.100a +	
	WildScenicRiver	3121.1	0.0	0.0	3.121e+	
San Francisco Buy	Agriculture InstrumFlowRequirements	17.4	88.5	- 97.9 0.0	-9.400e + 1.740e +	
	Managed Wedards	0.0	0.0	- 4.1	-3.200e +	
	RequiredDeltaOutlow	0.0	0.0	-4.1	0.000e +	
	Urban	0.0	1155.1	- 1142.5	1.260e +	
	WildScenicRiver	0.0	0.0	0.0	0.000e +	
San Josephin River	Agriculture	0.0	7006.5	-7088.7	-5.220c+	
	InstrumFlow Requirements	644.3	0.0	0.0	6.443c +	
	ManagedWedands	0.0	497.4	- 497.5	-1.000e -	
	RequiredDeltaOutflow	0.0	0.0	0.0	0.000e +	
	Urban	0.0	742.5	- 690.3	5.220e +	
	WildScenicRiver	2090.1	0.0	0.0	2.090a +	
South Coast	Agriculture	0.0	644.3	- 644.6 0.0	-3.000e -	
	InstreamFlowRequirements	5.8		- 32.3	5.800e +	
	ManagedWedands	0.0	32.3		0.000e +	
	RequiredDeltaOutflow Urban	0.0	3582.5	- 3540.9	0.000e + 4.160e +	
	Urban WildScenicRiver	104.4	0.0	- 25-03.9	4.160e + 1.044e +	
South Laboritan	Agriculture	0.0	870.5	- 384.8	-1.430e +	
Second Land Street	Instrume Requirements	77.7	0.0	0.0	7.770c +	
	Managed Wedards	0.0	0.0	0.0	0.000e+	
	RequiredDeltaOutflow	0.0	0.0	0.0	0.000e+	
	Urban	0.0	294.6	- 280.3	1.430e +	
	WildScenicRiver	43.5	0.0	0.0	4.350e +	
Tulare Lake	Agriculture	0.0	10574.4	-10660.8	-8.640e +	
	InstrumeFlow Requirements	0.0	0.0	0.0	0.000a +	
	ManagedWedands	0.0	77.7	- 77.6	1.000e -	
	RequiredDeltaOutlow	0.0	0.0	0.0	0.000e +	
	Urban	0.0	754.3	- 667.6	8.670e +	
	WildScenicRiver All	2016.7 37139.5	42375.5	-42334.6	2.017e + 3.718e +	

Table 2: 2010 water year data by Hydrologic Region.

May 1, 2017

J. J. Helly / hellyi@ucsd.edu

hellyj@ucsd.edu

WaDE Interoperability: Western States Regionalization

WaDE Interoperability: Select DAU

WaDE Interoperability: DAU Detail

Back to WaDE By Map Back to WaDE by DataType

Water Data Exchange (WaDE) Summary Data

NOTICE For all data provided, please review the associated methodology information thoroughly to discover data provenance and quality before

using, especially when comparing data between states, organizations or applications.

Organization: California Department of Water Resources

Location Information: DAU24354 - Detailed Analysis Unit and County - DAU24354

This summary is relevant for the reporting year: 2010 - Water

Water Use Categories

These data were reported on: 2017-05-30

Aericulture 1						Acre-Feet Per Year (AFY)
	FRESH	TOTAL	NaN	-999	-999	1,311,300
Managed Wetlands 1	FRESH	TOTAL	NaN	-999	-999	3,300
Required Delta Outflow 1	FRESH	TOTAL	NaN	-999	-999	0
Urban 1	FRESH	TOTAL	NaN	-999	-999	30,600

Supply Type	Acre-Feet Per Year (AFY)	GIS Feature Water Supply Methodology
Central Valley Project (State Project)	471,600	DAU24354 CA DWR Hydrologic Analysis (helly)@ucsd.edu)
Colorado River Deliveries	0	DAU24354 CA DWR Hydrologic Analysis (helly)@ucsd.edu)
Desalination	0	DAU24354 CA DWR Hydrologic Analysis (helly)@ucsd.edu)
Groundwater Extraction	810,400	DAU24354 CA DWR Hydrologic Analysis (helly)@ucsd.edu)
Local Imported Deliveries	0	DAU24354 CA DWR Hydrologic Analysis (helly)@ucsd.edu)
Local Supplies	60,600	DAU24354 CA DWR Hydrologic Analysis (helly)@ucsd.edu)
Other	0	DAU24354 CA DWR Hydrologic Analysis (helly)@ucsd.edu)
Other Federal Deliveries	0	DAU24354 CA DWR Hydrologic Analysis (helly)@ucsd.edu)
Return Flow	2,800	DAU24354 CA DWR Hydrologic Analysis (helly)@ucsd.edu)
State Water Project Deliveries	0	DAU24354 CA DWR Hydrologic Analysis (helly)@ucsd.edu)
0, Water from Refineries	0	DAU24354 CA DWR Hydrologic Analysis (helly)@ucsd.edu)
Water Transfers	0	DAU24354 CA DWR Hydrologic Analysis (helly)@ucsd.edu)

Multi-Source Data Integration Example

Using An OWIA Approach: Example of scriptable

mapping capabilities

- Six (6) data sources converted to OWIA Level 1 integrated in this image.
 - Smith and Sandwell Global Topography
 - 2. DAU polygons from CA-DWR,
 - 3. InSAR data (courtesy of NASA JPL),
 - 4. CA-DWR water use data for WY2010,
 - West-WRF modeled atmospheric river quantitative precipitation forecast (small image south of San Francisco Bay)
 - 6. National Hydrography data (inland water bodies).
- Map produced using GMT5

Georeferenced WY2010 Water Use GIS Application Example

1 What Are We Doing?

2 How Are We Doing IT?

OWIA Concept of Operations OWIA-Node Functional Components Integrated Schedule Implementing the OWIA

Theme I Topic A: Water Balance Automation (Use Case)

3 Results

Tables (Programmable)

Application Example: WaDE Interoperability with Traceability & Reproducibility
Figures (Programmable)

- 1. Water Balance Automation is the first case-study of how to apply OWIA concepts and principles
- 2. WY 2010 completed using this method and verified against Water Plan 2013
- 3. Interoperability across systems demonstrated using WaDE
- 4. Integrated schedule is being used to coordinate activities
- 5. Training workshop planned for Nov 2017 at SDSC contingent on data availability
- 6. OWIA System Requirements Document being updated after public comment period
- 7. Moving ahead with OWIA Implementation Plan to meet AB1755 schedule